An Efficient Approach for Scheduling Imaging Tasks Across a Fleet of Satellites
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Abstract

Dynamically retasking satellites in response to scien-
tific alerts is challenging because the tasks and oppor-
tunities of one satellite can influence another. This ab-
stract focuses on our high-level approach for scheduling
imaging tasks across a constellation of satellites, which
is subject to orbital and other practical constraints such
as finding a feasible up-/down- link schedule. Our ap-
proach is inspired by combining insights from two ex-
isting approaches about the structure of these problems
to create an efficient, new approach. We show that our
approach stacks up favorably against two baselines—an
optimal solver as well as a naive, greedy approach.

Introduction

The shift towards small sats and cube sats has exploded the
size of remote sensing constellations. Planet and Spire both
maintain constellations of over 100 spacecraft, with plans to
expand. Many other organizations are following with net-
works of their own. These large constellations may require
new scheduling techniques to improve operations.

We are working on developing new observing systems to
handle these increased capabilities along with direct integra-
tion with science models. These science models can identify
or project events of interest, such as flooding or a volcano
eruption, which can be used to trigger additional observa-
tions by target-able sensors (Chien et al. 2020).

This work focuses on the subproblem of imaging task
scheduling of point targets. We take scientific alerts and feed
them into the scheduler. To make the problem more realistic,
we also give the scheduler contending targets. These targets
consist of a set of volcanoes, various large cities, and ran-
dom target points around the Earth’s landmass. We plan for
several satellites, including the Planet Skysat constellation
as well as various NASA satellite assets capable of imaging.

Related Approaches

There have been many recent approaches proposed for solv-
ing the imaging and downlink satellite scheduling problem
(Augenstein et al. 2016; Nag, Li, and Merrick 2018; Shah
et al. 2019). Here, we briefly highlight two approaches that
form the inspiration for our approach.
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Figure 1: Image opportunities over the Sea of Japan (left)
translated into a DAG (right).
Credit: Augenstein et al. (2016), Fig. 2 & 3

Augenstein et al. (2016) formulates a Mixed Integer
Linear Program (MILP) for simultaneously solving both
the imaging and downlink problem for a constellation of
roughly 12 satellites. The intractability of this MILP leads
to an approach to solving the downlink and imaging prob-
lems sequentially. We omit the details of how the problem
is decoupled into two sequential subproblems and focus in-
stead on their approach for optimally solving each local
satellites imaging scheduling problem. This can be done ef-
ficiently by representing opportunities as a Directed Acyclic
Graph (DAG), where directed edges represent feasible tran-
sitions between opportunities, and then finding the maxi-
mally weighted path through the DAG using Dynamic Pro-
gramming (DP). The solutions are guaranteed optimal pri-
marily because each satellite’s image scheduling problem is
solved independently, and an additive objective function is
used—our approach relaxes both of these requirements. The
results from these DPs are used to provide the MILP esti-
mates of the amount the cumulative payload and priorities
of the imagery that a satellite might obtain between down-
link opportunities.

Nag, Li, and Merrick (2018) focuses on solving the global
image schedule optimization across a constellation of Cube-
sats. They provide both a globally optimal, but intractible
MILP for solving the problem, and also propose a way to
decompose the problem into a set of DPs for solving each
satellite’s problem locally optimally.

The DP approach described creates a table of size ¢ x p,
where ¢ is a discretization of time up to a horizon and p is



Pointing Options per satellite

< 1= p=1 p=2 =3 p=4 p=5 p=6 =7
gnt+OO

.g

§t+lo

.é

£e2@ ® O
% 7 opps

g

20 @ @ ® O
z 4 unique

E

e@ O O @ ® O

Figure 2: Cartoon illustration of DP algorithm.
Credit Nag, Li, and Merrick (2018), Fig. 11.

a set of unique target positions. Then, the DP table main-
tains the invariant that cell ¢, j contains the set of optimal
sequence of unique images that a satellite pointing at ¢ at
time j could have collected. However, Nag, Li, and Merrick
(2018) points out that this sequence is unlikely to be unique,
and so propose heuristics for maintaining a small set of se-
quences that achieve the optimal priorities.

While each satellite’s DP can be solved efficiently, the
global situation suffers from a lack of information sharing,
leading to duplicates images across satellites. Maintaining
this information across DP tables would lead to a combi-
natorial explosion. So instead, Nag, Li, and Merrick (2018)
propose breaking the problem into very short time horizons,
where within each time horizon each satellite’s subprob-
lem is solved independently. Then, after each of these short
horizons have passed, satellites exchange information about
which targets they have imaged.

A Sparse DAG Approach to Solving the Local
Image Scheduling Problem

Our approach to scheduling satellite imaging blends key in-
sights from both Augenstein et al. (2016) and Nag, Li, and
Merrick (2018). Both approximation approaches essentially
boil down to dynamic programs. The advantage of Augen-
stein et al. (2016) over Nag, Li, and Merrick (2018) is that
it does not require a discretization of time, thus significantly
reducing the number of entries in the DP-table representa-
tion. So, whereas the size of Nag, Li, and Merrick (2018)’s
is O(tp), where ¢ is number of time units represented and p
is the number of pointing positions, the size of Augenstein
et al. (2016)’s DP table is O(n), where n is the number of
opportunities / nodes in the DAG. While p can be treated as
a constant, when n is much less than ¢, we would expect a
table of size O(n) to be much more compact.

The advantage of Nag, Li, and Merrick (2018) over Au-
genstein et al. (2016), on the other hand, is that each cell
requires visiting only a fixed number p of previous cells
in order to update, whereas Augenstein et al. (2016) has to
consider all possible O(n) previous opportunities. Thus, the
time to fill a cell in the DP table is constant vs. linear.

Our approach attempts to blend the benefits of these two
approaches together. Like Augenstein et al. (2016), we rep-

resent the problem as a DAG, where each imaging opportu-
nity is represented as a node and where edges connect imag-
ing opportunities that are consistent with one another. Fur-
ther, a directed edge is added from one node to another if
there is sufficient time for the satellite to slew from the first
opportunity to the second. This edge is given a weight that is
equal to the utility of the second opportunity. A node’s util-
ity can be expressed as a function of the priority of the target
and the quality of the opportunity. Once this DAG is estab-
lished, the local problem can be solved using a DP approach
similar to both previous approaches. This is guaranteed to
return an optimal solution when the overall objective is the
sum of utilities of all opportunities.

A key insight in improving the efficiency of this approach
is that the structure of the problem can be exploited to ensure
a sparse graph. Each node must be connected to at least the
first consistent node that follows. However our formulation
does not add edges for nodes that extend beyond that node
more than a horizon that is equal to the maximum possible
slew time. This assures that the maximum in-/out- degree
of any node is bound by O(p), instead of O(n). Thus, the
DAG would have O(np) edges instead of O(n?), and each
node would require visiting O(p) neighbors. In short, our
DP-based approach is inspired by both previous approaches,
but exploits the temporal-spatial structure of the problem to
create a DAG with n nodes, where each node takes O(p)
to update, for a total runtime complexity of O(np), as com-
pared to O(tp?) and O(n?) of previous approaches.

Of course, many objective functions do not follow a gen-
eral additive independence assumption. For instance, if the
goal is to maximize coverage with the best quality possi-
ble, then including multiple images of the same target may
not improve the objective. For these more general, black-
box objective functions, a longest path approach is no longer
guaranteed to return an optimal solution. Thus, maintaining
a single, best-path according to a black box objective func-
tion is a heuristic approach. However, we are able to show
empirically that loss in utility is negligible compared to the
gains in efficiency over an exact, MILP-based formulation
of the problem. In this paper, we focus on the maximal cov-
erage problem—the problem of covering as many targets at
the highest utility possible.

Forward Sweep (FS)

The simplicity of our approach lends itself to relatively
straightforward opportunities for heuristically improving the
solution. First, we explain why our longest-path, DAG-based
approach may return a path that omits opportunities due
to the myopic nature of the algorithm—when determining
which path is best, only the backwards, and not the poten-
tial future, utility is considered. So, a returned path might
have chosen opportunity A, which targets location X, over
B, which targets location Y because at the time it raised
the overall objective more. However, later, an opportunity
C which also targets X but with a higher utility function is
chosen, making A superfluous. Thus, in hindsight, B could
have been included in the original path.

A simple, greedy approach to mitigating these examples
of opportunity cost is to first scan through all currently com-



puted paths and look for opportunities that are superflu-
ous, and thus can be removed from the path. Next, we scan
through all non-scheduled opportunities and check whether
each opportunity can be consistently added to and improves
the overall utility of the current set of satellite paths.

If an opportunity for improving the overall utility is found,
it opens up the possibility that an existing opportunity to im-
age the same target can now be safely removed from a satel-
lite’s path, bringing potentially new opportunities to greed-
ily improve the solution. Thus, this forward sweep procedure
can be applied until convergence is reached—if no new addi-
tions are found. The efficiency of this greedy forward sweep
can be improved by tracking and only considering the set of
non-superfluous unscheduled opportunities.

Iterative Improvement (II)

We handle the coordination of satellites by re-solving the
satellite’s local problems multiple times, each time taking
into consideration the solutions from other satellites’ previ-
ous round of computation. This results in an overall iterative
improvement of the global objective until some convergence
threshold is met. During the iterative improvement process,
we can take advantage of cached information from previ-
ous solves to improve efficiency. Information can similarly
be shared from one satellite’s problem to the next within a
single round of computation to improve effiency.

The information from one satellite’s local can seed the
subsequent satellites local computation. For instance, if the
first satellite captures an image of a target X with utility
Y, then the second satellite only needs to consider oppor-
tunities that also target X if they have utility that is higher
than Y, pruning the rest. Further, since the second satellite
knows that the first satellite already plans to acquire an im-
age of X with utility Y, we can update the utility of any
opportunities that target X within the DAG of the second
to be the gain in utility over Y, allowing the second satel-
lite to make a more informed calculation about trade-offs in
opportunities. Finally, during subequent iterations, the effi-
ciency of the longest path (re-)computation can be improved
by skipping over any opportunities at the beginning of the
satellites path that still represent the best known opportunity
for a given target and only begin recomputing once the pos-
sibility of a delta has been detected.

Overflight Imaging Benchmark Creation

In this section, we briefly describe our process for creating
realistic benchmarks for tasking a constellation of satellite
with imaging targets of interest.

Target Benchmarks

To emulate tasking satellites with acquiring images of sci-
entifically interesting phenomenon, we gathered volcanic
alerts using MODVOLC!, a tool that uses NASA’s MODIS
instrument to monitor the Earth’s surface for thermal evi-
dence of volcanic activity. We gathered the list of all alerts
across a 1-week period across 52 independent weeks of a 1
year period forming 52 unique sets of targets.

"http://modis.higp.hawaii.edu/

We complement these image targets of high scientific
value with additional targets of interest to mimic the fact
that satellites are often tasked with additional requests. The
first source of these additional targets was a list of 572 large
cities across the Earth. When combined with the volcanic
targets, this forms 52 sets of imaging targets each with just
over 600 targets. Finally, to form an even larger set of tar-
gets, we randomly sample from a list of 67,000 equidistant
coordinates that cover the entire landmass of the Earth until
the total number of targets reaches 4000.

Satellites

We emulate tasking a constellation of 15 commercially
available assets from Planet’s Skysat constellation, com-
bined with seven NASA and ESA Earth-observing satel-
lites (Terra, Aqua, Suomi NPP, Sentinel-2A, Sentinel-2B,
Sentinel-3a, Sentinel-5P). While the later assets are not task-
able in real life, their orbits were used to add variety.

Overflight Calculation

To generate satellite overflight data, we model the orbits of
satellites using publicly available Two-Line Element (TLE)
files. The quality of this model decreases as time moves fur-
ther from the time of the TLE’s creation, but TLEs are up-
dated frequently based on each satellite’s true position and
orbital mechanics. We assume each satellite has a nadir-
pointing, fixed field-of-view sensor.

Based on these orbital models, we calculate distance be-
tween the satellite, target pairs over the considered time in-
terval, sampling at a fairly coarse level (on the order of 10
minutes). This generates an array of distances between satel-
lite and target. We find the local minima in this array to
create a set of coarse estimates of overflight times. From
those coarse estimates, we perform a bounded optimization
around each minima to find a more precise overflight time,
allowing time to vary by the sampling interval at most. For
each potential overflight, we then calculate the field-of-view
angle required for the satellite to image the target. If the tar-
get satisfies field-of-view constraints, we add it to the list of
overflights for that satellite, target pair. We adjust the objec-
tive corresponding to capturing the target with that satellite
based to mimic the fact that the quality of images can de-
grade when taken off-nadir,

Empirical Analysis

We test the efficacy and relative trade-offs of our proposed
approached by comparing it against two other approaches.
First is an approach that should compute the exact solution
using the MILP characterization of the problem described by
Augenstein et al. (2016) and using the IBM ILOG CPLEX
Optimization Studio (CPLEX) (ILOG 2019). Second is a
greedy approach that uses a variant of the Forward Sweep
procedure described above, but does so in sorted order by
opportunity utility. We compare that against three versions
of our above approach:

e DAG - our DAG approach described above without the it-
erative improvement of forward sweep heuristics applied;



o DAG+FS - the DAG approach with the forward sweep
post processing applied, but not iterative improvement;

o DAGHII+FS - the DAG approach with both the forward
sweep and iterative improvement.

We ran this across two benchmarks. The first benchmark
included 52 sets of roughly 600 targets each, which include
the volcanic targets of interest and list of large cities as de-
scribed, and computed overflight information for an entire
week’s worth of orbits. The second benchmark included 52
sets of roughly 4000 targets each, which include the vol-
canic, cities, and landmass targets as described above, and
spanned a single 24-hour period worth of overflights. The
averages across all 52 weeks for each of these benchmarks
are reported in Tables 1 and 2 respectively. The utility of
imaging opportunities were adjusted to account for being
off-nadir and also for staleness (with a preference for im-
ages that could be taken sooner rather than later).

Solve Time Speedup # of targets  obj. val.

(seconds) (relative to optimal)
CPLEX 20.29 - -
Greedy FS 291 6.97 99.54% 90.87%
DAG 0.84 24.08 99.71% 99.76%
DAG+FS 1.19 17.10 99.71% 99.97%
DAG+II+FS 2.91 6.98 100.00% 99.92%

Table 1: Results across a small set of targets (600 targets,
volcanic+cities) for 7-day period.

Solve Time Speedup # of targets  obj. val.

(seconds) (relative to optimal)
CPLEX 37.29 - - -
Greedy FS 36.13 1.03 91.86% 69.16%
DAG 5.81 6.42 99.65% 98.44%
DAG+FS 6.67 5.59 99.96% 99.57%
DAG+II+FS 16.04 2.33 99.94% 99.63%

Table 2: Results across a larger set of targets (4000 targets,
volcanic+cities+landmass) for a 24-hour period.

These results highlight a few trends. Importantly, our ap-
proach demonstrated that we can significantly improve solve
time while only negligibly impacting the number and overall
quality of the images acquired.

The results in Table 1 points to the first benchmark be-
ing relatively easy to find a reasonably high level of success.
The basic greedy-FS approach captures 99.5% of opportuni-
ties that the optimal solution, at a quality of just under 91%.
However, our DAG-based approaches achieve these results
an order of magnitude more quickly than the exact MILP-
based approach returned by CPLEX. The benchmark in Ta-
ble 2 was a much denser set of opportunities, with greater
resource contention. This slowed all approaches down and
decreased the relative margin by which our DAG-based ap-
proaches reduced the solve time. However, our approaches
achieve a high-level of optimality, despite returning an ap-
proximate solution.

We suspect that slow performance of the II procedure was
due to a relatively long tail of convergence. We hypothesize

that the II idea might achieve better performance if we set a
convergence criteria that uses a cost/benefit heuristic rather
than waiting to achieve full convergence, which as shown,
achieves marginal gains at high computational costs.

The relatively slow solve times of the greedy-FS approach
were due to the algorithm being implemented rather naively,
with every opportunity being considered for addition to the
schedule. Further, since opportunities were considered in or-
der of utility, we have to search for the correct insertion point
into the path each time.

Conclusion

Overall, we show empirically our approach that solves the
global problem as loosely-coupled DAGs can lead to im-
proved solve times over an exact MILP-based formulation
with only modest losses in overall solution quality. In the fu-
ture, we plan to test our approach on larger, more diverse set
of benchmarks and to better characterize the types of prob-
lems (structure, contention, etc) where our approach is best
suited. We also plan to compare our approach against other
recent approximate algorithms for solving the satellite image
tasking problem, including the two approaches that inspired
our approach. Finally, we hypothesize that our iterative ap-
proach has an added benefit over a MILP-based formation
in that the iterative improvement easily allows targets to be
easily added, removed, or their priorities adjusted within a
DAG without requiring a full re-solve and plan to character-
ize the trade-offs in play.
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